Rabu, 07 September 2016

DNA (Pengertian, Struktur, Fungsi, Sifat, Replikasi)

Pengertian DNA

DNA adalah suatu asam nukleat yang menyimpan segala informasi biologis yang unik dari setiap makhluk hidup dan beberapa virus. 

DNA merupakan singkatan dari deoxyribonucleic acid atau dalam Bahasa Indonesia disebut asam deoksiribonukleat. DNA berasal dari tiga kata utama yaitu deoxyribo, dan nucleid acid (asam nukleat). Arti kata deoxyribo (Wikipedia) adalah gula yang kehilangan atom oksigennya, sementara arti kata asam nukleat (Wikipedia) adalah molekul yang mengandung informasi genetik.

Struktur kimia dna berupa makromolekul kompleks yang terdiri atas 3 macam molekul, yaitu gula pentosa (deoksiribosa), asam fosfat, dan basa nitrogen. Basa nitrogen DNA terdiri dari golongan purin, yaitu adenine dan guanine, serta golongan pirimidin yaitu timin dan sitosin.
Peran utama dari molekul DNA adalah penyimpanan jangka panjang informasi. DNA sering dibandingkan dengan satu set cetak biru atau resep, atau kode, karena berisi instruksi yang dibutuhkan untuk membangun komponen lain dari sel, seperti protein dan molekul RNA. Segmen DNA yang membawa informasi genetik ini disebut gen, tetapi urutan DNA lain yang memiliki tujuan struktural, atau terlibat dalam mengatur penggunaan informasi genetik.
  
DNA dapat mereplikasi yaitu membentuk salinan dirinya sendiri. Setiap untaian DNA berisi sekuens basis tertentu. Setiap basis juga dihubungkan oleh molekul gula dan fosfat. Bila basis membentuk anak tangga (horizontal), maka molekul gula dan fosfat membentuk bagian vertikal dari tangga tersebut.

Penemu Struktur DNA
Yang menemukan struktur DNA untuk pertama kali adalah James Watson, Francis Crick dan Maurice Wilkins. James Watson adalah warga negara Amerika kelahiran tahun 1928 yang pada usia 18 tahun telah menerima gelar Ph.D pada bidang Zoologi dari Indiana University. Sementara Francis Crick adalah seorang warga Inggris kelahiran tahun 1916 yang sangat tertarik pada fisika, kimia dan matematika. James Watson dan Francis Crick mulai kerja bersama untuk menentukan struktur DNA pada tahun 1949 di Cavendish Laboratory di Cambridge. Dan, Maurice Wilkins adalah seorang ilmuwan asal Selandia Baru yang menerima gelar Ph.D nya pada bidang Fisika. Pada tahun 1950-1952, Wilkins bekerjasama dengan Raymond Gosling dan Rosalind Franklin dalam suatu percobaan menentukan struktur DNA menggunakan sinar-X. Berbekal hasil dari kolaborasinya bersama Franklin itulah Wilkins kemudian memulai kerjasamanya bersama Watson dan Crick dalam menentukan struktur DNA yang kini dikenal dengan nama Double-Helix atau Heliks Ganda. Ketiganya dianugerahi hadiah Nobel pada tahun 1962 pada bidang Medicine atas hasil karya mereka (struktur Heliks Ganda DNA) pada tahun 1953 itu.


Sifat DNA

Sifat-sifat DNA  antara lain:
1.  Merupakan material kromosom sebagai pembawa informasi genetik, melalui aktivitas pembelahan sel.
2.  Jumlah DNA konstan dalam setiap jenis sel dan spesies. Konstan dalam artian tetap dan tidak berubah jumlahnya. Contohnya Jumlah DNA pada kucing berbeda dengan jumlah DNA pada Anjing. Begitupun dengan jumlah DNA pada manusia dan primate berbeda jumlahnya.
3.  Kandungan DNA dalam sel bergantung pada sifat ploidi (genom) sel atau jumlah kromosom di dalam sel.
4.  Tebalnya 20 Å (Amstrong) dan panjangnya beribu-ribu Å (1 Å = 10^-10 meter).
5.  Dapat melakukan replikasi, yaitu membentuk turunan atau menggandakan diri. DNA hasil replikasi ( DNA anak) memiliki urutan basa yang identik dengan yang dimiliki oleh heliks ganda parental ( DNA induk).
6.  Pada sel organisme prokariotik (bakteri), DNA berantai tunggal. Pada sel eukariotik, DNA berupa heliks (rantai) ganda.
7.  Pada suhu mendekati titik didih atau pada pH yang ekstrim (kurang dari 3 atau lebih dari 10), DNA mengalami denaturasi (membuka). Jika lingkungan dikembalikan seperti semula, DNA dapat kembali membentuk heliks ganda, disebut renaturasi.


Fungsi DNA

1. Fungsi DNA sebagai bahan warisan sel
DNA atau Asam deoksiribonukleat merupakan bahan yang dapat diwariskan pada semua sel. DNA seara tepat bereplikasi (memperbanyak diri) selama setiap generasi sel.

Pada saat sel melakukan pembelahan, salinan yang identik dengan DNA parental dibagikan ke setiap sel anak. Sehingga, DNA menyediakan instruksi untuk semua generasi masa depan sel tunggal dan keseluruhan organisme multiseluler.

2. Fungsi DNA dalam mengendalikan aktivitas sel
DNA dalam mengendalikan aktivitas sel dilakukan dengan menentukan sintesis enzim dan protein lainnya.
Seperti yang diketahui, protein adalah kelas molekul dengan keanekaragamn fungsi selular esensial paling besar; protein berfungsi sebagai katalisator dan mengatur reaksi metabolik, menyediakan bahan mentah untuk struktur sel, memungkinkan pergerakan, berinteraksi dengan lingkungan dan sel lain, dan mengendalikan pertumbuhan serta pembelahan sel.

3. Fungsi DNA sebagai kumpulan unit informasi
Gen yang merupakan fragmen fragmen fungsional pada DNA berfungsi dalam menentukan rangkaian asam amino suatu protein. Banyak gen baik itu ribuan hingga jutaan gen yang berlainan dibutuhkan untuk membuat seluruh protein yang penting dalam sebuah sel.


Struktur DNA

Secara umum, ciri-ciri struktur DNA adalah heliks ganda (double helix); tersusun atas basa nitrogen Adenin, Guanin, Timin dan Sitosin; dan merupakan polimer dari monomer nukleotida (fosfat-gula deoksiribosa-basa nitrogen).

Struktur DNA adalah heliks ganda yang tersusun atas dua utas polinukleotida yang saling terhubung oleh ikatan hidrogen yang lemah. Ikatan hidrogen tersebut terbentuk antara dua basa nitrogen, purin dan pirimidin, yang saling berpasangan. Adenin (basa purin) berpasangan dengan Timin (basa pirimidin) yang terhubung dengan ikatan rangkap dua, sementara Guanin (basa purin) berpasangan dengan Sitosin (basa pirimidin) yang terhubung dengan ikatan rangkap tiga. Nah, berikut ini struktur molekul dari Adenin dan Guanin, serta Timin dan Sitosin.


DNA (Pengertian, Struktur, Fungsi, Sifat, Replikasi)

Basa nitrogen tersebut terhubung ke suatu gula deoksiribosa pada rantai punggung DNA. Gula deoksiribosa merupakan modifikasi dari gula ribosa, yiatu gula dengan 5 atom karbon, dimana pada atom karbon nomor 2 kehilangan atom oksigennya. Oleh karena itu, gula tersebut dinamakan de-oksi yang berarti kehilangan oksigen. Berikut ini struktur gula deoksiribosa yang terdapat pada struktur molekul DNA:



Pada rantai pungung DNA (DNA backbone), gula deoksiribosa kemudian terhubung dengan suatu gugus fosfat, tepatnya pada atom karbon nomor 5 dari gula deoksiribosa, seperti pada gambar di bawah ini:



Ketiga komponen tersebut, yaitu basa nitrogen, gula deoksiribosa dan gugus fosfat membentuk suatu molekul yang kemudian disebut dengan Nukleotida. Selain nukleotida, kita juga mengenal adanya istilah nukleosida, nah letak perbedaan nukleosida dan nukleotida adalah pada ada atau tidaknya gugus fosfatnya. Jika gugus fosfat dihilangkan, maka disebut dengan nukleosida. Jadi, nukleotida adalah gabunganantara nukleosida ditambah gugus fosfat. Gabungan dari berbagai nukleotida akan membentuk suatu polimer yang disebut dengan polinukleotida. Berikut ini struktur Nukleotida dan Polinukleotida pada struktur DNA:



Polimer tersebut terbentuk akibat ikatan yang terjadi antara gugus fosfat pada satu nukleotida dengan gula deoksiribosa pada nukleotida terdekatnya. Ikatan tersebut tepatnya terjadi antara gugus fosfat dengan atom karbon nomor 3 pada gula deoksiribosa. Ikatan itu disebut dengan ikatan fosfodiester.



Polinukleotida yang terbentuk memiliki arah, yang sebenarnya dikenal dengan polaritas, yaitu dari 5 ke 3 atau dari atas ke bawah. Angka 5 dan 3 tersebut sebenarnya merupakan angka pada penomoran atom karbon pada gula deoksiribosa.

Struktur Heliks DNA
Dua Polnukleotida yang berbeda arah kemudian saling bergabung dan terhubung dengan ikatan hidrogen (yang lemah) antara dua basa nitrogen dimana basa purin berpasangan dengan basa pirimidin untuk membentuk suatu struktur heliks ganda yang disebut struktur heliks DNA. Nah, berikut ini gambar struktur DNA yang heliks ganda atau double helix:



Replikasi DNA

Proses replikasi DNA merupakan suatu masalah yang kompleks, dan melibatkan rangkaian protein dan enzim yang secara kolektif merakit nukleotida dalam urutan yang telah ditentukan. Dalam menanggapi isyarat molekul yang diterima selama pembelahan sel, molekul-molekul ini melakukan replikasi DNA, dan mensintesis dua untai baru menggunakan helai yang ada sebagai template atau ‘cetakan’. Masing-masing menghasilkan dua, molekul DNA yang identik terdiri dari satu untai baru dan salah satu DNA lama. Oleh karena itu proses replikasi DNA disebut sebagai semi-konservatif.
Rangkaian peristiwa yang terjadi selama replikasi DNA prokariotik telah dijelaskan di bawah ini.

1. Inisiasi
Replikasi DNA dimulai pada lokasi spesifik disebut sebagai asal replikasi, yang memiliki urutan tertentu yang bisa dikenali oleh protein yang disebut inisiator DnaA. Mereka mengikat molekul DNA di tempat asal, sehingga mengendur untuk perakitan protein lain dan enzim penting untuk replikasi DNA. Sebuah enzim yang disebut helikase direkrut ke lokasi untuk unwinding (proses penguraian/seperti membuka resleting) heliks dalam alur tunggal.

Helikase melepaskan ikatan hidrogen antara pasangan basa, dengan cara yang tergantung energi. Titik ini atau wilayah DNA yang sekarang dikenal sebagai garpu replikasi (Garpu replikasi atau cabang replikasi adalah struktur yang terbentuk ketika DNA bereplikasi). Setelah heliks yang terbuka, protein yang disebut untai tunggal mengikat protein (SSB) mengikat daerah terbuka dan mencegah mereka untuk menempel kembali. Proses replikasi sehingga dimulai, dan garpu replikasi dilanjutkan dalam dua arah yang berlawanan sepanjang molekul DNA.

2. Sintesis Primer

Sintesis baru, untai komplementer DNA menggunakan untai yang ada sebagai template yang dibawa oleh enzim yang dikenal sebagai DNA polimerase. Selain replikasi mereka juga memainkan peran penting dalam perbaikan DNA dan rekombinasi.

Namun, DNA polimerase tidak dapat memulai sintesis DNA secara independen, dan membutuhkan 3′ gugus hidroksil untuk memulai penambahan nukleotida komplementer. Ini disediakan oleh enzim yang disebut DNA primase yang merupakan jenis DNA dependent-RNA polimerase. Ini mensintesis bentangan pendek RNA ke untai DNA yang ada. Ini segmen pendek disebut primer, dan terdiri dari 9-12 nukleotida. Hal ini memberikan DNA polimerase platform yang diperlukan untuk mulai menyalin sebuah untai DNA. Setelah primer terbentuk pada kedua untai, DNA polimerase dapat memperpanjang primer ini menjadi untai DNA baru.

Pembukaan resleting DNA dapat menyebabkan supercoiling (bentukan seperti spiral yang mengganggu) di wilayah garpu berikutnya. Ini superkoil DNA dibuka oleh enzim khusus yang disebut topoisomerase yang mengikat ke bentangan DNA depan garpu replikasi. Ini menciptakan memotong pada untai DNA dalam rangka untuk meringankan supercoil tersebut.

3. Sintesis leading strand

DNA polimerase dapat menambahkan nukleotida baru hanya untuk ujung 3′ dari untai yang ada, dan karenanya dapat mensintesis DNA dalam arah 5′ → 3′ saja. Tapi untai DNA berjalan di arah yang berlawanan, dan karenanya sintesis DNA pada satu untai dapat terjadi terus menerus. Hal ini dikenal sebagai untaian pengawal (leading strand).

Di sini, DNA polimerase III (DNA pol III) mengenali 3′ OH ujung RNA primer, dan menambahkan nukleotida komplementer baru. Saat garpu replikasi berlangsung, nukleotida baru ditambahkan secara terus menerus, sehingga menghasilkan untai baru.

4. Sintesis lagging Strand (untai tertinggal)
Pada untai berlawanan, DNA disintesis secara terputus dengan menghasilkan serangkaian fragmen kecil dari DNA baru dalam arah 5 ‘→ 3’. Fragmen ini disebut fragmen Okazaki, yang kemudian bergabung untuk membentuk sebuah rantai terus menerus nukleotida. Untai ini dikenal sebagai lagging Strand (untai tertinggal) sejak proses sintesis DNA pada untai ini hasil pada tingkat yang lebih rendah.

Di sini, primase menambahkan primer di beberapa tempat sepanjang untai terbuka. DNA pol III memperpanjang primer dengan menambahkan nukleotida baru, dan jatuh ketika bertemu fragmen yang terbentuk sebelumnya. Dengan demikian, perlu untuk melepaskan untai DNA, lalu bergeser lebih lanjut kebagian atas untuk memulai perluasan primer RNA lain. Sebuah penjepit geser memegang DNA di tempatnya ketika bergerak melalui proses replikasi.

5. Penghapusan Primer
Meskipun untai DNA baru telah disintesis primer RNA hadir pada untai baru terbentuk harus digantikan oleh DNA. Kegiatan ini dilakukan oleh enzim DNA polimerase I (DNA pol I). Ini khusus menghilangkan primer RNA melalui ‘5→ 3’ aktivitas eksonuklease nya, dan menggantikan mereka dengan deoksiribonukleotida baru dengan 5 ‘→ 3’ aktivitas polimerase DNA.



6. Ligasi 
Setelah penghapusan primer selesai untai tertinggal masih mengandung celah antara fragmen Okazaki berdekatan. Enzim ligase mengidentifikasi dan menyumbat celah tersebut dengan menciptakan ikatan fosfodiester antara 5 ‘fosfat dan 3’ gugus hidroksil fragmen yang berdekatan.


7. Terminasi (pemutusan) 
Replikasi ini terhenti di lokasi terminasi khusus yang terdiri dari urutan nukleotida yang unik. Urutan ini diidentifikasi oleh protein khusus yang disebut tus yang mengikat ke situs tersebut, sehingga secara fisik menghalangi jalur helikase. Ketika helikase bertemu protein tus itu jatuh bersama dengan untai tunggal protein pengikat terdekat.


Materi terkait : 
RNA (Pengertian, Struktur, Fungsi, Jenis, Proses Pembentukan) 

Demikian Materi DNA (Pengertian, Struktur, Fungsi, Sifat, Replikasi), semoga dapat bermanfaat.

Unknown

Author & Editor

Orang hebat bisa melahirkan beberapa karya bermutu, tapi guru bermutu bisa melahirkan ribuan orang hebat.

0 komentar:

Posting Komentar

Catatan: Hanya anggota dari blog ini yang dapat mengirim komentar.